ELEG 5491: Introduction to Deep Learning Attention and Transformer

Prof. LI Hongsheng

Office: SHB 428 e-mail: hsli@ee.cuhk.edu.hk web: https://dl.ee.cuhk.edu.hk

Department of Electronic Engineering The Chinese University of Hong Kong

March 2023

イロト イヨト イヨト

1

Attention for Neural Machine Translation (NMT) Extension of Transformer to Visual Neural Networks

Outline

Transformer for Sequence-to-sequence Modeling

Extension of Transformer to Visual Neural Networks

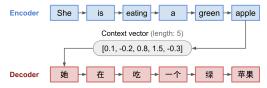
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Attention for Neural Machine Translation (NMT)

Transformer for Sequence-to-sequence Modeling Extension of Transformer to Visual Neural Networks

Revisit of seq2seq model

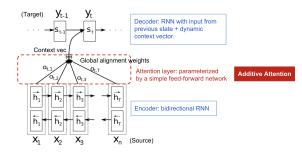
- The conventional seq2seq model is proposed for neural machine translation and generally follows an encoder-decoder architecture
- The encoder converts the input sequence into a sentence embedding (or context vector, or "thought" vector) of a fixed length (dimension)
- The embedding vector is expected to be a comprehensive summary of the *whole* input sequence
- The decoder takes only the sentence embedding from the encoder as input to emit the output sequence
- Both the encoder and decoder sub-networks can be modeled as recurrent neural networks and can use LSTM or GRU units



The major drawback of the seq2seq model: this fixed-length embedding vector is incapable of remembering the whole long sentences. Often it is more likely to forget the early parts of the input sequence ≥ + < ≥ → S ⊂ 3/41

Attention for NMT

• As the context vector might not be able to capture the information of the whole sentence, the attention mechanism [Bahdanau et al., 2015] explicitly builds word-level alignment between the input and output sequences



- $\mathbf{x} = [x_1, x_2, \dots, x_n]$ input (source) sequence of length n
- $\mathbf{y} = [y_1, y_2, \dots, y_m]$ output (target) sequence of length m
- The encoder is a **bidirectional RNN** having forward hidden states \overline{h}_i and backward hidden states \overline{h}_i , and generating the hidden state at position i

$$h_i = [\overrightarrow{h}_i^T; \overleftarrow{h}_i^T]^T, \quad i = 1, \dots, \mathcal{R} \text{ for a product } \text{ for all } \mathcal{R} \text{ for a product } \text{ for all } \mathcal{R} \text{ for a product } \text{ f$$

Attention for NMT

• The decoder has hidden state $s_t = f(s_{t-1}, y_{t-1}, c_t)$ for the output word at position t for t = 1, ..., m

$$\begin{split} c_t &= \sum_{i=1}^n \alpha_{t,i} h_i & \text{Context vector for output } y_t \\ \alpha_{t,i} &= \text{align} \left(y_t, x_i \right) & \text{How well two words } y_t \text{ and } x_i \text{ are aligned} \\ &= \frac{\exp\left(\text{score}\left(s_{t-1}, h_i\right)\right)}{\sum_{i'=1}^n \exp\left(\text{score}\left(s_{t-1}, h_{i'}\right)\right)} & \text{Softmax of some predefined alignment score} \end{split}$$

- c_t the sum of hidden states of the input sequence weighted by the alignment scores, based on which, the class or regression prediction of each output position can be made
- The alignment model assigns a score $\alpha_{t,i}$ to the pair (y_t,x_i) at input position t and output position i
- score a 2-layer feed-forward network (or MLP) estimating the affinity between s_{t-1} (just before emitting y_t) and h_i

score $(s_{t-1}, h_i) = W_1(\tanh(W_2[s_{t-1}; h_i] + b_2) + b_1)$

 W_1, W_2, b_1, b_2 are weight matrices and biases to be learned

≣ • n q (P 5/41

Image Captioning

- By changing the encoder to a CNN model, we can output an image caption according to the contents of an input image
- The above mentioned attention mechanism can also be used to align different image regions with the output words as in the Show, attend and tell paper
- The alignment weights $\alpha_{t,i}$ for each output position t are normalized across the whole 2D spatial image plane. Each input index i indices a pixel (x, y) in the 2D feature maps from the visual CNN

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

Different Alignment Score Functions

• Different alignment (or similarity measurement) functions

Туре	Alignment Score Function
Cosine similarity	$\operatorname{score}(s_t, h_i) = \cos(s_t, h_i)$
Concatenation-based*	$\operatorname{score}(s_t, h_i) = W_1 \tanh(W_2[s_t; h_i])$
General	$\operatorname{score}(s_t, h_i) = s_t^T W h_i$
Dot-product	$\operatorname{score}(s_t, h_i) = s_t^T h_i$
Scaled dot-product †	$\operatorname{score}(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{\dim}}$

*Bias vectors are not shown. [†]dim is the dimension of the vectors s_t and h_i .

イロト イロト イヨト イヨト 三日 - のくや

Transformer and Key, Query, Value Features

- Transformer was proposed in "Attention is All You Need" paper and was one of the most impactful and interesting papers in 2017
- It proposes a series of improvements to the conventional attention and can be used in any sequence modeling tasks
- In the previous attention mechanisms, $\{h_i\}_{i=1}^m$ are used for both affinity/similarity estimation and information aggregation (e.g., $c_t = \sum_{i=1}^n \alpha_{t,i} h_i$) at each output position t
- Given a feature sequence $X \in \mathbb{R}^{n \times k}$ of length n, a Transformer attention layer first converts them into key, query, value features $K \in \mathbb{R}^{n \times d}$, $Q \in \mathbb{R}^{n \times d}$, $V \in \mathbb{R}^{n \times d}$ with linear projections (fully-connected layers)

 $K = W_k X + b_k$ $Q = W_q X + b_q$ $V = W_v X + b_v$

 $W^Q, W^K, W^V, b^Q, b^K, b^V$ are learnable parameters

• k_i , q_i , v_i denote the key, query, value feature vectors of the *i*th input

Transformer and Key, Query, Value Attention

- Unlike conventional attention mechanism, where the hidden states are used for both similarity estimation and information aggregation, a Transformer attention layer calculates pairwise similarities with query and key features and aggregate value features
- The transformer adopts the scaled dot-product attention: the output is a weighted sum of the values, where the weight assigned to each value is determined by the dot-product of the query with all the keys:

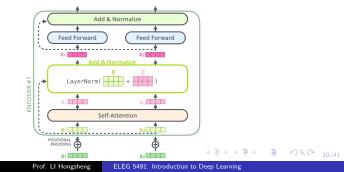
$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) V$$

- $\frac{QK^T}{\sqrt{d}} \in \mathbb{R}^{n \times n}$ stores similarities between every pair of (q_i, k_j) at (i, j) of the resulting matrix
- $\bullet~\ensuremath{\mathsf{The softmax}}$ normalization is performed for each row
- The Transformer attention result is an $n \times d$ matrix. For the *i*th row, it weightedly aggregates value features from different positions of the sequence, v_1, v_2, \ldots, v_n

<□▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 9/41

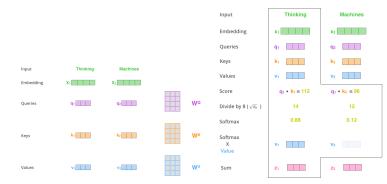
Transformer Encoder

- For both the encoder and decoder of the conventional RNN, hidden states h_i at position i are obtained from its immediate and previous hidden states h_{i-1}
- For Transformer encoder, the representation at position i can receives information from all positions of the input sequence at the same layer
- Self-attention mechanism is adopted: Q, K, V are generated from the same sequence features X at the same layer
- The transformer encoder can consists of multiple transformer blocks



The Illustration of Self-attention in the Encoder

• The self-attention in Transformer encoder

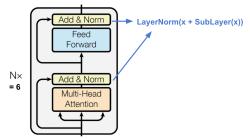


イロト イポト イヨト イヨト

臣

Transformer Block Design

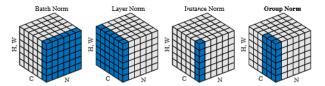
- For conventional RNN with attention mechanism, each time step just has a single FC layer or an 2-layer/3-layer MLP for generating hidden states of each time step
- Transformer adopts a block design



- Each block consists of two sub-layers, a scaled dot-product attention sub-layer and a feed-forward sub-layer, with residual connection and layer normalization (a substitute for BN)
- Feed-forward network: Two linear layers with a ReLU activation between them

Layer Normalization

- The effect of batch normalization is dependent on the mini-batch size and it is not obvious how to apply it to recurrent neural networks
- Batch normalization significantly reduces the training time in feed-forward neural networks
- Layer normalization computes the mean and variance used for normalization from all of the neurons in each layer on a single training sample/instance
- A graphical illustration when layer normalization is applied to images

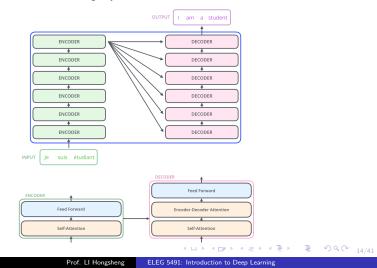


(日)

3

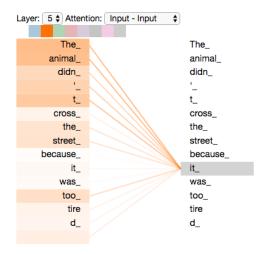
Encoder-decoder with Transformer Block

• The encoder and decoder consist of 6 transformer blocks respectively, whose architectures are slightly different



Visualization of self-attention in Transformer Encoder

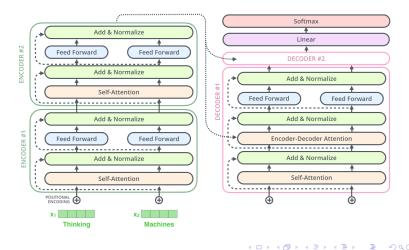
"The animal didn't cross the street because it was too tired"



æ –

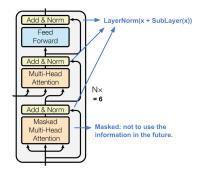
The Encoder-decoder Architecture

• The encoder-decoder architecture



Transformer Decoder

- The original version stacks 6 Transformer decoder layers
- The first multi-head attention sub-layer is modified to prevent positions from attending to subsequent positions, as we don't want to look into the future of the target sequence when predicting the current position
- The first attention sub-layer only attends decoder features. It is therefore self-attention
- The second attention sub-layers attends all final encoder features. It is called *cross-attention*



イロト 不得 とくき とくき とうきょう

The Animation of Decoding from Transformer

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

The Animation of Decoding from Transformer

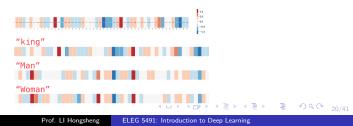
Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

<ロ > < 母 > < 臣 > < 臣 > 臣 の へ つ 19/41

Transformer Output

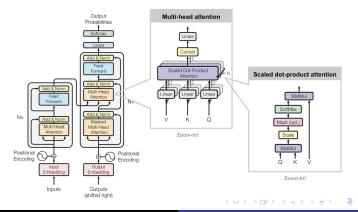
Transformer target and actual outputs

• What about transformer inputs? There are pre-trained word embeddings that convert each word into a vector (such as Word2Vec and Glove)



Full Transformer Architecture

- In the decoder, the first masked multi-head attention aggregates information from only previous output words
- The second multi-head attention uses queries generated from the first multi-head attention, computes their similarities to the encoder's key features, and aggregates the encoder's value features



Multi-head Attention

- Instead of performing a single attention function, the authors found it beneficial to linearly project the queries, keys and values for *h* times with different linear projections (fully-connected layers without sharing parameters)
- On each set of the query, key, value features, the attention functions are performed in parallel with separate sets of parameters
- The obtained features are concatenated, resulting the final values

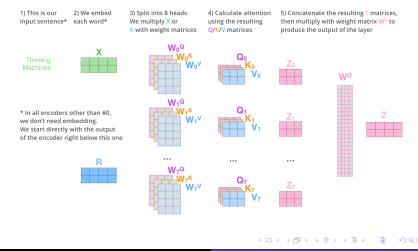
$$MultiHead(Q, K, V) = Concat (head_1, \dots, head_h) W^O,$$

where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

• We can set h = 8. Then the projections have learnable parameter matrices $W_i^Q \in \mathbb{R}^{\frac{d}{8} \times d}$, $W_i^K \in \mathbb{R}^{\frac{d}{8} \times d}$, $W_i^V \in \mathbb{R}^{\frac{d}{8} \times d}$, $W^O \in \mathbb{R}^{(\frac{d}{8} \times 8) \times d}$ (we didn't show biases here)

Illustration of Computation of Multi-head Attention

• The actual computation of multi-head attention

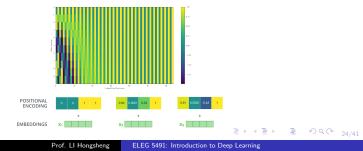


Positional Encoding

- $\bullet~$ If the Q,K,V features are just encoded from the sequence contents, we cannot capture their positional information
- For instance, "Do you like apple" and "You do like apple" have totally different meanings
- The Transformer adds a positional encoding vector to each input embedding $PE_{(pos,2i)} = \sin(pos/10000^{2i/d})$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d})$$

 ${\rm PE}$ is an *d*-dimensional feature vector, *i* denotes the *i*-th feature dimension, pos is the position of the sequence



Non-local Networks

- The non-local network [Want et al. 2018] is a direct extension of Transformer attention to image and video understanding
- It was originally proposed for video classification. The non-local operation is formulated as

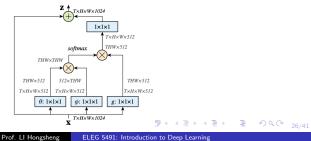
$$\mathbf{y}_{i} = \frac{1}{\mathcal{C}(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_{i}, \mathbf{x}_{j}) g(\mathbf{x}_{j})$$

- x the input signal (image, sequence, video; often their features)
- $\bullet~{\bf y}$ the output features of the same size (might have different channels) of ${\bf x}$
- i and j the index of the output and input positions (in space, time, or spacetime), respectively
- $g(\mathbf{x}_j)$ a feature representation of the input signal at position j
- $f(\mathbf{x}_i, \mathbf{x}_j)$ a pairwise function f computing a scalar between i and all j
- C normalization term

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● 25/41

Similarity Functions

- Similar to different alignment (similarity measurement) functions in the attention mechanism, there are different choices of the *f* function
- Gaussian $f(\mathbf{x}_i, \mathbf{x}_j) = e^{\mathbf{x}_i^T \mathbf{x}_j}$, where $\mathcal{C}(\mathbf{x}) = \sum_{\forall j} f(\mathbf{x}_i, \mathbf{x}_j)$
- Embedded Gaussian $f(\mathbf{x}_i, \mathbf{x}_j) = e^{\theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j)}$, where θ and ϕ are two learnable linear projections
- Dot product $f(\mathbf{x}_i, \mathbf{x}_j) = \theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$. Similar to the dot-product used in Transformer attention
- Concatenation $f(\mathbf{x}_i, \mathbf{x}_j) = \text{ReLU}\left(\mathbf{w}_f^T\left[\theta\left(\mathbf{x}_i\right), \phi\left(\mathbf{x}_j\right)\right]\right)$
- g can be considered as the value features, while θ and ϕ can be considered as query and key features



Non-local Block

Non-local operation

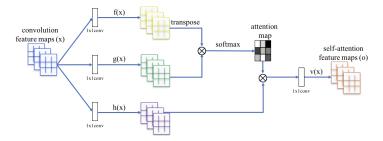


Figure: Here h(x) denotes the value features, and f(x) and g(x) denote query and key features.

Non-local block

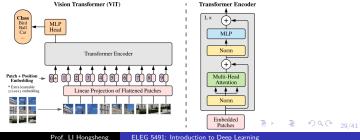
$$\mathbf{z}_i = W_z \mathbf{y}_i + \mathbf{x}_i$$

"+ \mathbf{x}_i " denotes a residual connection

Visualization of the non-local operations

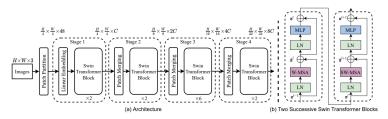
Vision Transformer

- There are also emerging visual neural networks that are purely built based on Transformer and the query-key-value attention mechanism
- (Dosovitskiy et al. 2020) proposed the Vision Transformer (ViT) without using any convolutional operations
- 1) ViT separates an input image into 16 × 16 image patches, extracts each of their features, and then feeds them into an multi-layer Transformer. 2) The input of the first position of the Transformer encoder has a cls-token vector as input. 3) A classification MLP head is appended to the first position's output features to make the final prediction
- It can stack up to 50 attention layers (by now) and can achieve comparable performance on ImageNet classification with visual CNNs



Swin Transformer

- ViT produces feature maps of a single low resolution and have quadratic computation complexity to input image size
- Swin Transformer builds hierarchical feature maps by merging image patches in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window



臣

Swin Transformer

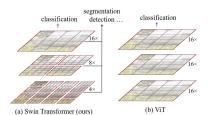


Figure: (Left) Swin Transformer generate multi-scale feature pyramid. (Right) ViT produce a single-scale feature map.

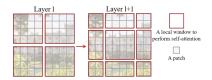


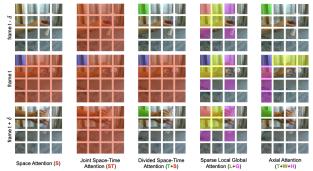
Figure: In layer l, a regular window partition is used and self-attention is computed within each window. In the next layer l + 1, the window partition is shifted. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l.

(日)

э

TimeSformer for Video Understanding

- Following ViT, each frame is decomposed into non-overlapping patches
- Each patch is first linearly embedded into a vector. The patch features are then input into the Transformer
- Multiple attention patterns are investigated



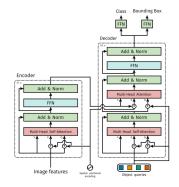
- Although we only show you three frames, the attention extends to the entire clip (8, 16, or 96 frames investigated)
- 12 Transformer attention layers are stacked following ViT ,

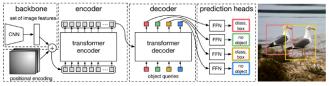
ъ

𝔄 𝔄 𝔄 32/41

DETR: End-to-End Object Detection with Transformers

- DETR adopts an encoder-decoder architecture and aims at abandoning the post-processing NMS
- The encoder further transforms the visual features from a visual backbone
- A series of learnable "object" queries to attend the visual feature map via the cross-attention mechanism





DETR: End-to-End Object Detection with Transformers

- Let y be the ground truth set of objects, and $\hat{y} = \{\hat{y}_i\}_{i=1}^N$ the set of N predictions
- \bullet As N is generally larger than |y|, we pad y with \varnothing to have size N
- We find a bipartite matching between the two sets by searching for a permutation $\sigma \in \mathfrak{S}_N$ of N elements with the lowest cost $\hat{\sigma} = \underset{\sigma \in \widetilde{S}_N}{\operatorname{arg\,min}} \sum_i^N \mathcal{L}_{\mathrm{match}} \left(y_i, \hat{y}_{\sigma(i)} \right)$ where $\mathcal{L}_{\mathrm{match}} \left(y_i, \hat{y}_{\sigma(i)} \right)$ is a pair-wise

matching cost between ground truth y_i and a prediction with index $\sigma(i)$

- Each ground truth $y_i = (c_i, b_i)$ has a class label c_i and box coordinates $b_i \in [0, 1]^4$. For the prediction with index $\sigma(i)$, we define its class c_i probability as $\hat{p}_{\sigma(i)}(c_i)$
- The matching loss is defined as

$$\mathcal{L}_{\text{match}} = -\mathbf{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}\left(c_i\right) + \mathbf{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}\left(b_i, \hat{b}_{\sigma(i)}\right)$$

• The box loss is defined as

$$\lambda_{\text{iou}} \mathcal{L}_{\text{iou}} \left(b_i, \hat{b}_{\sigma(i)} \right) + \lambda_{\text{L1}} \left\| b_i - \hat{b}_{\sigma(i)} \right\|_1$$

where $\mathcal{L}_{\rm iou}$ is the generalized IoU loss

Visualization of What did DETR Learn

• Visualization of self-attention in the Transformer encoder

• Visualization of box predictions from 20 prediction slots (object queries) in the DETR decoder

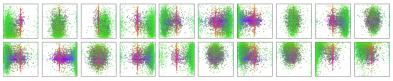


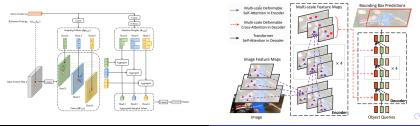
Figure: All box predictions in the COCO val set. Each box center is represented by one dot. Red, blue, and green dots represent large, medium, and small-scale object boxes. $\langle \Box \rangle + \langle \overline{O} \rangle + \langle \overline{O} \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle = \langle \overline{O} \rangle \langle \overline{O} \rangle |_{35/41}$

Deformable DETR

- DETR suffers from slow convergence because of the zero-initialized queries need to gradually learn which region it needs to be responsible for
- Deformable DETR introduces the deformable attention mechanism. For each object query z_q and its associated reference point p_q , it learns to attend to a sparse sub-set of positions in the multiple scale feature maps
- Given a feature map $\mathbf{x} \in \mathbb{R}^{C \times H \times W}$, the deformable attention feature is calculated as

DeformAttn
$$\left(\boldsymbol{z}_{q}, \boldsymbol{p}_{q}, \boldsymbol{x}\right) = \sum_{m=1}^{M} \boldsymbol{W}_{m} \left[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}_{m}' \boldsymbol{x} \left(\boldsymbol{p}_{q} + \Delta \boldsymbol{p}_{mqk}\right)\right],$$

 W_m and W'_m represent multi-head linear projections. A_{mqk} are the normalized attention on the sparse deformed points $\{\mathbf{p}_q + \Delta \boldsymbol{p}_{mqk}\}$



Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation

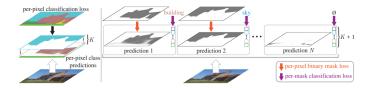


Figure: Per-pixel classification vs. per-mask classification.

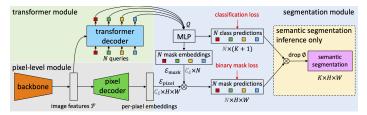


Figure: A set of N queries will be used to attend to the visual feature map. They generate N binary maps and N multi-class confidence score vectors.

୬**୯** _{37/41}

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation

• The set of N^{gt} ground truth segments

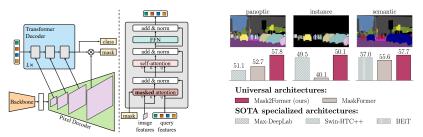
$$z^{\text{gt}} = \left\{ \left(c_i^{\text{gt}}, m_i^{\text{gt}} \right) \mid c_i^{\text{gt}} \in \{1, \dots, K\}, m_i^{\text{gt}} \in \{0, 1\}^{H \times W} \right\}_{i=1}^{N^{\text{gt}}}$$

- c_i^{gt} is the ground truth class of the *i*th segment
- m_i^{gt} is the *i*th segment's **binary** mask
- A set of N $(N > N^{gt})$ is used. The set of ground truth is pad with "no object" tokens \emptyset to allow one-to-one matching
- If a query predicts "no object", its mask prediction is ignored
- The matching is directly conducted between the predicted segments and the GT segments

$$\mathcal{L}_{\mathsf{mask-cls}}\left(z, z^{\mathrm{gt}}\right) = \sum_{j=1}^{N} \left[-\log p_{\sigma(j)}\left(c_{j}^{\mathrm{gt}}\right) + \mathbf{1}_{c_{j}^{\mathrm{gt}} \neq \varnothing} \mathcal{L}_{\mathsf{mask}}\left(m_{\sigma(j)}, m_{j}^{\mathrm{gt}}\right) \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Mask2Former



- Mask2Former is currently the state-of-the-art architecture on various image segmentation tasks
- Its queries consecutively attend multi-scale visual feature pyramid from small to large scales

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

39/41

References

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR 2015.
- Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. "Show, attend and tell: Neural image caption generation with visual attention." ICML 2015.
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. "Attention is all you need." NeurIPS 2017.
- Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." NeurIPS 2016.
- https:

//lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

- Wang, Xiaolong, Ross Girshick, Abhinav Gupta, and Kaiming He. "Non-local neural networks." CVPR 2018.
- Wu, Bichen, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Masayoshi Tomizuka, Kurt Keutzer, and Peter Vajda. "Visual transformers: Token-based image representation and processing for computer vision." arXiv:2006.03677 2020.
- Yuan, Li, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. "Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet." arXiv:2101.11986 2021.
- Gedas Bertasius, Heng Wang, Lorenzo Torresani, "Is Space-Time Attention All You Need for Video Understanding?", arXiv:2102.05095, + + ≥ + + + ≥ + = + = → - 2 - (- + 40/41)

References

- Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. "Per-Pixel Classification is Not All You Need for Semantic Segmentation." NeurIPS 2021.
- Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. "Masked-attention Mask Transformer for Universal Image Segmentation." CVPR 2022.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで