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Max pooling and strided convolution

@ Both max pooling and strided convolution are constantly used to decrease

spatial dimension of feature maps

Xiaogang Wang (CUHK)
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Max pooling with 2 x 2 kernel and stride 2
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Max pooling and strided convolution

@ Both max pooling and strided convolution are constantly used to decrease
spatial dimension of feature maps

Strided convolution with 3 x 3 kernel and stride 2
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Feature map size and receptive field size

@ Output feature maps can be calculated with the following formula

Nout = {*nin + ip — kJ +1

where nj, and noy: are the number of channels of the input and output feature
maps, p is the padding size, s is the stride size, k is the convolution kernel size.

@ The receptive field of a feature can be briefly defined as the region in the input
image pixel space that the feature is calculated from

_—

=

Two consecutive convolution with kernel size k = 3 x 3, padding sizep =1 x 1, stride s =2 x 2.
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Feature map size and receptive field size
@ Output feature maps can be calculated with the following formula
Jout = jin X 8
Tout = fin + (kK — 1) X jin
where j is the jump in the output feature map, r is the receptive field size
@ For very first input to a network, we always have o, =1 and j = 1
@ Given the previous example, we have
n=r+k-1)xjp=1+B-1)x1=3j;j=jpx2=2
L=n+k-1)xj=34+2x2=7,p=j; x2=4

Two consecutive convolution with kernel size k = 3 x 3, padding size p = 1 x 1, stride s = 2 x 2.
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Different CNN structures for image classification

AlexNet

Clarifai

Overfeat

VGG
Network-in-network
GooglLeNet
ResNet
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Model architecture-AlexNet Krizhevsky 2012

@ 5 convolutional layers and 2 fully connected layers for learning features.
@ Max-pooling layers follow first, second, and fifth convolutional layers

@ The number of neurons in each layer is given by 253440, 186624, 64896, 64896,
43264, 4096, 4096, 1000

@ 650000 neurons, 60000000 parameters, and 630000000 connections

27

Max
Max Max pooling
pooling pooling

4096 4096

(Krizhevsky NIPS 2014)
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How transferable are features in CNN networks?

@ (Yosinski et al. NIPS’14) investigate transferability of features by CNNs
@ The transferability of features by CNN is affected by

» Higher layer neurons are more specific to original tasks
» Layers within a CNN network might be fragilely co-adapted

@ Initializing with transferred features can improve generalization after substantial
fine-tuning on a new task
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Base tasks

@ ImageNet are divied into two groups of 500 classes, A and B

@ Two 8-layer AlexNets, baseA and baseB, are trained on the two groups,
respectively
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Transfer and selffer networks

@ A selffer network BnB: the first n layers are copied from baseB and frozen. The
other higher layers are initialized randomly and trained on dataset B. This is the
control for transfer network

@ A transfer network AnB: the first n layers are copied from baseA and frozen. The
other higher layers are initialized randomly and trained toward dataset B
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Transfer and selffer networks (cont'd)

@ A selffer network BnB+: just like BnB, but where all layers learn
@ A transfer network AnB+: just like AnB, but where all layers learn
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Dissimilar datasets

@ Divide ImageNet into man-made objects A (449 classes) and natural objects B
(551 classes)

@ The transferability of features decreases as the distance between the base task
and target task increases
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Investigate components of CNNs

Filter size

Filter (channel) number

Stride

Dimensionality of fully connected layers
Data augmentation

Model averaging
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Investigate components of CNNs (cont’d)

@ (Chatfield et al. BMVC’14) pre-train on ImageNet and fine-tune on PASCAL VOC
2007

@ Different architectures

» mAP: CNN-S > (marginally) CNN-M > (~%2.5) CNN-F

@ Different data augmentation

» No augmentation

» Flipping (almost no improvement)
» Smaller dimension downsized to 256, cropping 224 x 224 patches from the
center and 4 corners, flipping (~ 3% improvement)

[ Arch. ] convl [ conv2 [ convd [ convd [ conv5 [ fulle [ full7 | full8 |
64x11x11 256x5x5 256x3x3 256x3x3 256x3x3 4096 | 4096 | 1000
CNN-F | st 4, pad 0 st. 1, pad2 |st.1,pad1 |st.1,pad1 | st1, pad 1 | drop- | drop- | soft-
LRN, x2 pool | LRN, x2 pool - - x2 pool out out | max
96x7x7 256x5x5 | 512x3x3 | | 512x3x3 I 512x3x3 4096 | 4096 | 1000
CNN-M st. 2, pad 0 st. 2, pad 1 st. 1, pad 1f|fst. 1, pad 1f||st. 1, pad 1}| drop- | drop- | soft-
LRN, x2 pool | LRN, x2 pool - - X2 pool out out max
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 | 4096 | 1000
CNN-S st. 2, pad 0 pad1 |st.1,pad1 |st.1,padl | st 1, pad1 | drop- | drop- | soft-
LRN,m x2 pool - - W}%ﬂ out out max

(Chatfield et al. BMVC 2014)

Xiaogang Wang (CUHK)

Network Structures

Fast
similar to AlexNet

Medium
similar to Clarifai model

Slow
similar to OverFeat
Accurate model

February 18, 2019 15/60



Investigate components of CNNs (cont’d)

@ Gray-scale vs. color (~ 3% drop)
@ Decrease the number of nodes in FC7

> to 2048 (surprisingly, marginally better)
» to 1024 (marginally better)
> to 128 (~ 2% drop but 32x smaller feature)
@ Change the softmax regression loss to ranking hinge loss

> Wed(lpos) > Wep(lheg) + 1 — € (€ is a slack variable)
> ~ 2.7% improvement
» Note, £, normalising features account for ~ 5% of accuracy for VOC 2007

@ On ILSVRC-2012, the CNN-S achieved a top-5 error rate of 13.1%

» CNN-F: 16.7%
» CNN-M: 13.7%
» AlexNet: 17%
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Model architecture-Clarifai

@ Winner of ILSVRC 2013

@ Max-pooling layers follow first, second, and fifth convolutional layers

@ 11x11to 7x7, stride 4 to 2 in 1st layer (increasing resolution of feature maps)
@ Other settings are the same as AlexNet

@ reduce the error by 2%.

Max
Max poaling
pooling

’ ‘ Val ‘ Val ‘ Test ‘
Error % Top-1 | Top-5 | Top-5
(Gunji ot al., 2012) N N 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——
1 convnet for Clarifai 38.4 16.5 ——
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Model architecture-Clarifai further investigation

@ More maps in the convolutional layers leads to small improvement.
@ Model averaging leads to improvement (random initialization).

o
13 13
— 1= ~ P
b sl T ’ﬁj \ Pl
; )

258 I

Max

)
256

Max Max pocling S

pooling pooling

Vi Val Test

| Error % ]A'oﬂp 1 ‘ Top-5 | Top-5 ‘
(Gunji et al., 2012) - 26.2
(Krizhevsky et al., 2012), 1 AlexNet” 40.7 18.2 ——
1 convnet for Clarifai 38.4 16.5 ——
5 convnets for Clarjfai 36.7 15.3 15.3

1 convnet for Clg‘rﬁa\ z/ b w1th
layers 3,4,5: 512,1024,51% maps — (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8
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Model architecture-Overfeat

@ Less pooling and more filters (384 => 512 for conv3 and 384=>1024 for conv4/5).

Clan

rifai

T

L“
- 13 3

ﬁ:: =% s dense| [den:
-
Max
/ posling 36
Qutput
Layer 1 2 4 5 6 7 8
Stage conv+ max_|_convlr max copv cogv | comv+max || fall | Al Fall
# channels 96 256 512 1024 1024 3072 | 4096 1000
Filter size 11x11 x5 3x3 3<3 3x3 - -
Conv. stride 4xd 1x1 1x1 Ixl 1x1 - -
Pooling size 2x2 2x2 - - 2x2 -
Pooling stride 2x2 Ix2 - - 2x2
Zero-Padding size - - IxIxlxl | IxIxlxl IxIx1xl - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1
Overfeat
top-5 error (%)
Clarifai Overfeat-5  Overfeat-7

Without data augmentation 1.5

16.9

Xiaogang Wang (CUHK) Network Structures

7 14.18

February 18, 2019

19/60



Model architecture-Overfeat

@ With data augmentation, more complex model has better performance.

Clarifai

Lu "
N .
13 !Q: - 13 3& =% i3 dense’| fens
b e\
Max
posling 4096
Output
4 5 6 7 8
o cofe | comv + max Full Fall
512 1024 1024 3072 | 4096 1000
3x3 3x3 3x3 -
Ix1 Ixl Ix -
- 5 Ix -
N 5 Ix - -
Zero-Padding size - - Ixlx1x] Ixlxlxl Ixlxlxl - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1
Overfeat
top-5 error (%)
Clarifai Overfeat-5 Overfeat-7
With data augmentation 1476 13.52 11.97
Without data augmentation  16.5 16.97 14.18
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Model architecture-the devil of details

@ CNN-F: similar to AlexNet, but less channels in conv3-5.

CNN-S: the most complex one.

@ CNN-M 2048: replace the 4096 features in fc7 by 2048 features. Makes little
difference.

@ Data augmentation. The input image is downsized so that the smallest
dimension is equal to 256 pixels. Then 224 x 224 crops are extracted from the
four corners and the centre of the image.

[ Arch. ] conv] | convY [ conw3 [ convd | convd [ fullé [Tull7 [Tull§]
% IxTT 256xX3x3 T56K3x%3 || 06K3x3 [ 296x3x3 | 4096 [ 4096 | 1000
. CNN-F | [st. 4)padO [ st 1,pad2 st T,pad1|stT,pad1[st T, pad I|drop-|drop- | soft-
ILSVRC-2012 (top-5 error) LRN, xpz pool | LRN. x2 pool - - x2pool | out | out | max
(@) Clarifai 1 ConvNet 16.0 TonTxT TS6x5 | SIZNA3 | SIZoXS | SIXox3 | 40% [ 4096 [ 1000
(b)) CNNF 16.7 CNN-M | st 2,pad0 | st 2, pad1 [st I,pad1|st I,pad1|st I, pad I|drop- |drop- | soft-
(¢)CNN M 137 LRN, x2 pool | LRN, x2 pool - - x2pool | out | out | max
(d) CNN M 2048 135 96X TXT 256X5%5 ST2x3X3 T2x3x3 | ST2x3x3 | 4096 [ 4096 [ 1000 |
3 CNN-S | st.2,pad0 | [st. 1Jpad1 |st I.pad1|st I.pad1|st I, pad I|drop- |drop- | soft-
(c)CNN'S 13.1 A
h = LRN, x3 pool x2 pool - - x3 pool out | out | max
Clarifai | 96x7x7 256x5x5 | 384x3x3 | 384x3x3 |256x3x3 4096 |4096|4096)
st. 2, st. 2, pad1 |st. 1,pad1|st. 1,pad1|st. 1,pad1|drop |drop |drop
LRN x2 | | LRN g |
X2 pool X2 pool
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Model architecture-very deep CNN

@ The deep model
VGG in 2014.

@ Apply 3 x 3 filter for
all layers.

@ 11 layers (A) to 19
layers (E).

(CUHK)

ConvNet Confi gumrion

A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB mmage)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
‘maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | comv3-128 | conv3-128
‘ conv3-128 | conv3-128 | comv3-128 ‘ conv3-128
‘maxpool

conv3-256 | conv3-256
conv3-256 | conv3-256

conv3-256 | conv3-256
conv3-256 | conv3-256
conv1-256

comv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256

‘maxpool

conv3-512 | conv3-512
conv3-512 | conv3-512

conv3-512 | conv3-512
conv3-512 | conv3-512
convl-512

comv3-512 | conv3-512
comv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512

‘maxpool

conv3-512 | conv3-512
conv3-512 | conv3-512

conv3-512 | conv3-512
conv3-512 | conv3-512
convl-512

conv3-512 | comv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512

‘maxpool

FC-4096

FC-4096

FC-1000

soft-max
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Model architecture- very deep CNN

@ The deep model VGG in 2014.
@ Better to have deeper layers. 11 layers (A) => 16 layers (D).

@ From 16 layers (D) to 19 layers (E), accuracy does not improve.

ConvNet Configuration
A A-LRN B C D E
11weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) | smallest image side | top-1 val. error (%) | top-5 val. error (%)
train (5) | test ()
A 256 256 29.6 10.4
A-LRN 256 256 297 105
B 256 256 28.7 9.9
256 256 28.1 9.4
C 384 384 28.1 9.3
[ 1256;512] | 384 273 838
25 256 27.0 88
D 384 384 26.8 87
[256.512] 384 256 8.1
256 256 273 9.0
E 384 384 26.9 8.7
[256.512] 384 255 8.0

Xiaogang Wang (CUHK)
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Model architecture- very deep CNN

@ Scale jittering at the training time.
@ The crop size is fixed to 224 x 224.
@ S: the smallest side of an isotropically-rescaled training image.

@ Scale jittering at the training time: [256; 512]: randomly select S to be within

[256 512].

@ LRN: local response normalisation. A-LRN does not improve on A.

ConvNet C on
A A-LRN B C D E
T1weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) | smallest umage side | top-1 val. error (%) | top-5 val. error (%)
train (S) test ((Q)
A 256 256 29.6 104
A-LRN 256 256 297 105
B 256 256 28.7 9.9
256 256 28.1 9.4
c | 384 384 781 93
I 1256,512] 384 773 (X3
256 256 270 8.8
D 384 384 26.8 8.7
[256.512] 384 25.6 8.1
256 256 27.3 9.0
E 384 384 269 8.7
[256,512] 384 353 50

Xiaogang Wang (CUHK)
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Model architecture- very deep CNN

@ Multi-scale averaging at the testing time.
@ The crop size is fixed to 224 x 224.
@ Q: the smallest side of an isotropically-rescaled testing image.

@ Running a model over several rescaled versions of a test image (corresponding

to different Q), followed by averaging the resulting class posteriors. Improves

accuracy (25.5 => 24.8).

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) smallest image side top-1 val. error (%) [ top-5 val. error (%)
tramn (5) test ((J)
B 256 224,256,288 282 9.6
256 234756,288 277 9.2
C 384 352,384,416 278 9.2
[256: 512 | 256,384,512 263 82
256 224,256,288 26.6 8.6
D 384 352384 416 26.5 8.6
[256; 512] | 256,384,512 248 7.5
256 224,256,288 269 8.7
E 384 352,384,416 26.7 8.6
[256; 512] | 256384512 248 7.5

Xiaogang Wang (CUHK)
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Model architecture- Network in Network

Input patch

@ Use 1x1 filters after each convolutional layer.
(clxhxw)

Output feature vector
(€2x1x1)

C | Filter

(€2xclxhxw)

Output feature vector
@3xIxI)
Ci I Filter
(e3xe2xlIxl)
Convolutional layer CCCP layer
Efficient implementation of CCCP

Xiaogang Wang (CUHK)
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Model architecture- Network in Network

@ Remove the two fully connected layers (fc6, fc7) of the AlexNet but add NIN into
the AlexNet.

6

Feed to Softma;

Parameter Number Performance  Time to train (GTX Titan)
AlexNet 60 Million (230 Megabytes) | 40.7% (Top 1) | 8 days
NIN 7.5 Million (29 Megabytes) | 39.2% (Top 1) |4 days
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Model architecture- GoogleNet

@ Inspired by the good performance of NIN.

lg,étwnrki"‘r'l network

‘ \ .
\

_We need to go deeper

Google
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Model architecture- GoogleNet

@ Inception model.

@ Variable filter sizes to capture different visual patterns of different sizes. Enforce
sparse connection between previous layer and output.

@ The 1 x 1 convolutions are used for reducing the number of maps from the

previous layer.

Filter
concatenation

1x1 convolutions

3x3 convolutions 5x5 convolutions 1x1 convolutions
L) ) L)

A&mions 1x1 convolutions 3x3 max pooling

Xiaogang Wang (CUHK)
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Model architecture- GoogleNet

@ Based on inception model.

@ Cascade of inception models.

@ Widths of inception modules ranges from 256 filters (in early modules) to 1024 in

top inception modules.

g2 8

512 512 512

256 480 480
, ‘ I"ﬂ"
e | :

L B
a v

=] =
Xiaogang Wang (CUHK) Network Structures
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Model architecture- GoogleNet

@ Parameters.

type "'::5" depth | #1x1 ":‘;‘:w £33 :d.:n; Lo Eg params | ops
convolution 11211264 1 27K 34M
max pool 56 5664 0
convolution 56x56x 192 2 64 192 112K 360M
max pool 28x28x192 0
inception (3a) 3828256 2 64 06 128 16 32 32 159K 128M
inception (3b) 28x28x 480 2 128 128 192 32 64 380K 304M
max poal 93,2 Mx1dx480 | 0
inception (4a) 14142512 2 192 96 208 16 48 64 364K M
mception (4b) 14x14x512 2 160 112 24 24 64 64 437K 85EM
mception (4¢) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 1414528 2 12 144 238 3z 64 64 SR0K 19M
imception (4¢) 14x14x832 2 256 160 320 32 128 128 B40K 170M
max pool TxT=832 ]
inception (5a) TxTx832 2 256 160 320 3z 128 128 1072K | 54M
mception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 7IM
avg poal THT/1 1x 131024 0
dropout (404} 1211024 0
lincar 111000 1 1000K ™M
softmax 1x 11000 L]

Network Structures
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GoogleNet-v2/BN-Inception

@ The advantages of Batch Normalization (BN) layer

» Higher learning rate can be used.
» The need for Dropout can be reduced.
@ Main differences from GoogleNet-v1
» 5 x 5 convolution layers are converted to two consecutive 3 x 3 convolution
layers with up to 128 filters
» Adopt the BN layer after each convolution layer.

» During training, moving average is used to calculate the mean and
variance of the BN layers

» During testing, the mean and variance are calculated using the entire
training set in a layer-by-layer manner
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GoogleNet-v2/BN-Inception

@ Inception vs. BN-Baseline: using BN can improve the training speed significantly

@ BN-x5 & BN-x30: the initial learning rate can be increased largely to improve the
training speed even better
@ BN-x5-Sigmoid: saturation problem by Sigmoid can be a kind of removed

08r

06,

0.5

0.4

07k -

= = = [nception

----- BN-Baseline

------- BN-x5

— BN-x30

«+ 4=+ BN-x5-Sigmoid
4  Steps fo match Inception
I I T

. s
sM 10M 15M 20M 25M 30M
Performance on ImageNet

Inception: Inception-v1 without BN
BN-Baseline: Inception with BN

BN-x5: Initial learning rate is increased by a factor of 5 to 0.0075
BN-x30: Initial learning rate is increased by a factor of 30 to 0.045

Xiaogang Wang (CUHK)

BN-x5-Sigmoid: BN-x5 but with Sigmoid
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GoogleNet-v3

@ Factorization was introduced in convolution layer as shown above to further
reduce the dimensionality, so as to reduce the overfitting problem

@ By using 3 x 3 filter, number of parameters =3 x 3 =9

@ By using 3 x 1 and 1 x 3 filters, number of parameters =3x14+1x3=6
Number of parameters is reduced by 33%

Two 1x7 and 7x1
replacing two 7x7
n=7in
implementation

3 x 3 convbecomes 1 x 3and3 x 1 convs (Left), 7 x 7 convbecomes 1 x 7 and 7 x 1 convs (Right)

Filter Concat

1x7 and 7x1
replacing 7x7

Xiaogang Wang (CUHK) Network Structures February 18, 2019

34/60



GoogleNet-v3

@ Three types of inception modules (A, B, C)

For
high dimensional | Filter Concat ]

Filter Concat

5x5in
GoogleNet
(Inception-v1)

=1[A]

Inception Module A
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GoogleNet-v3

@ Conventionally, such as AlexNet and VGGNet, the feature map downsizing is

done by max pooling

@ The drawback is either too greedy by max pooling followed by conv layer, or too

expensive by conv layer followed by max pooling
@ Half of feature maps are done by conv with stride 2. Half of feature maps are

obtained by max pooling. These 2 sets of feature maps are concatenated

| 17x17x640 |

| 17x17x640 |

| 35x35x640

— vaaa!%
Qm\mzol )
-,,Asoomg/

CI ncep!mn;)

| 35x35x320 |

3x3
stride 2

| 35x35x320

I 17x17x640

concal

[C17x17x320 ]

[[17x17x320 ]

conv

pool
| 35x35x320 \

Pooling / N\
Filter Concat

J

Xiaogang Wang (CUHK)
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GoogleNet-v3

@ GoogleNet-v3/Inception-v3 architecture

Grid Size Reduction
(with some modifications)
Input: $995299x3. Outpul:8x8x2048

4x Inception Module B
hY

Grid Size Reduction

2x Inception Module C

=

Convolution
AvgPool
MaxPool
Concat
Dropout

Fully connected
Softmax

Input:
299x299x3

Output:
8xBx2048

—f

Final part:8x8x2048 -> 1001

Auxiliary Classifier

Inception-v3 Architecture (Batch Norm and ReLU are used after Conv)

Xiaogang Wang (CUHK) Network Structures



ResNets @ ILSVRC & COCO 2015 Competitions

@ 1stplaces in all five main tracks

» ImageNet Classification: ‘Ultra-deep’ 152-layer nets
» ImageNet Detection: 16% better than 2nd

» ImageNet Localization: 27% better than 2nd

» COCO Detection: 11% better than 2nd

» COCO Segmentation: 12% better than 2nd
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Roadmap of Network Depth

28.2

16.4
I 22 layers ] [ 19 layers ]
\
. 6.

3.57

6.7 7.3
ILSVRC'15  ILSVRC'14
ResNet

ILSVRC'14
GoogleNet

ILSVRC'13
VGG

ILSVRC'12

ILSVRC'11

AlexNet
ImageNet Classification top-5 error (%)
Xiaogang Wang (CUHK)

ILSVRC'10
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Going deeper

Bear the following in mind:
@ Batch normalization. [Sergey loffe, Christian Szegedy. ICML 2015]

Is learning better networks as simple as stacking more layers?
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Simply stacking more layers

CIFAR-10
train error (%) test error (%)
2 20y
56-layer
56-layer
1 10
20-layer
20-layer
00 1 6 0 1 5 6

2 3
iter. (led)

@ Plain nets: stacking 3x3 conv layers.
@ 56-layer net has higher training error and test error than 20-layer net.
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Deep Residual Learning

Plain net:

“

weight layer

anytwo
stacked layers v relu

weight layer

HE) lrelu

H(x) is any desired mapping.
Let these two conv (weight) layers fit H(x).
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Deep Residual Learning

Residual net:

X

v
| weight layer |
F(x) Jrelu identity
weight layer X

H(x)=F(x)+x

H(x) is any desired mapping.
Let these two conv (weight) layers fit H(x).

Let these two conv (weight) layers fit F(x), where F(x) = H(x) — x.
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Deep Residual Learning

Residual net:
X
v
| weight layer |
F(x) Jrelu identity
| weight layer | X

H(x)=F(x)+x

F(x) is a residual mapping w.r.t. identity.

@ If identity were optimal, easy to set weights as 0
@ If optimal mapping is closer to identity, easier to find small fluctuations
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Network Structure

Basic design: VGG style b
@ all 3 x 3conv
@ no FC layer, no dropout A
RelLU

igh
Training details:

@ Trained from scratch !

@ Use batch normalization @

@ Standard hyper-parameters & RiLU
augmentation Xp+1

BN

Figure: Basic residual block.
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Network Structure

Detailed ResNet structure (ighimost) for ImageNet 2015 entry: (part1)

VGG-19 34-layer plain 34-layer residual
image image image
reazs [_3dconv,64 |
size: 224 3x3 conv, 64
pool, /2
output
| 3x3 conv, 128 I | 7x7 conv, 64, /2 | | 7x7 conv, 64, /2 |
\ v \
pool, /2 pool, /2 pool, /2
output
size: 56 I 3x3 conv, 256 I I 3x3 conv, 64 ] I 3x3 conv, 64
A 4 A4
| 3x3conv,256 | | 3x3conv,64 | | 3x3cony, 64
Y A2
I 3x3 conv, 256 I I 3x3 conv, 64 I I 3x3 conv, 64
v v Y
| 3x3 conv, 256 I | 3x3 conv, 64 I | 3x3 conv, 64
1 £ 7
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Network Structure

Detailed ResNet structure (righimost) for ImageNet 2015 entry: (part2)

output
size: 7

output
size: 1

|

| 3x3cony, 256

3x3 conv, 256

pool, /2 | 3x3cony,512,/2 | 3x3cony,512,/2 |
v Y

| 33cony,512 | 33cov,512 |
| 3x3cony,512 | 3x3 conv, 512. - |
| 3x3conv,512 | 33 oo:v, 512 |
| 3x3cony,512 | 3x3 conv, 512
[ 33cony512 | 3x3 conv, 512

fc :(’]96 avg pool avg pool

| fc 4096 | | fc 1000 | fc 1000 |

fc 1000

The dotted shortcuts increase channel dimensions.

Xiaogang Wang (CUHK)
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CIFAR-10 experiments

CIFAR-10 plain nets

Ta

56-layer
44-layer
32-layer
20-layer

emor (%)

S|

‘plain-2
plain-3' v 7/ N
| plain-4 solid: test

= plain-5
H 13 dashed: train

CIFAR-10 ResNets

error (%)
=

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.

Xiaogang Wang (CUHK) Network Structures

R

20-layer
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ImageNet experiments

ImageNet plain nets

ImageNet ResNets
AN ol
T \
\.
) l R ST
g . g |
E Spvitt 34-layer 240 18-layer
g - 6 ,
Ml ‘\—-—\-—-\"‘ ——
e ———
- solid: test S A
lain-18| ResNet-18 AN
_,m,” dashed: train 18-layer v \34»Iayer
200 10 30 40 50 20‘) 10 20 30 40 50
iter. (1e4) iter. (1ed)

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.
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Extension and Resource

@ Residual Networks Behave Like Ensembles of Relatively Shallow Networks,
NIPS 2016.

@ Comparison among ResNet, Highway Network, DenseNet. A blog post here.
Another one.

@ ResNet code: [Model available] [Torch implementation]
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https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32#.uci7w82ad
http://yanran.li/peppypapers/2016/01/10/highway-networks-and-deep-residual-networks.html
https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch

Roadmap of Network Structure

arXiv 2016
Inception-ResNet model
C. Szegedyetal.

GoogleNet -> Inception -> Inception_v4

Top-5: 3.1
CVPR 2016
Residual Network
K. Heetal
VGG ->PReLU (20 layers) -> ResNet (269 layers)
Top-5: 4.49
ICLR 2015, CVPR 2015
VGG, GoogleNet
K. Simonyan; C. Szegedy
Classification top-5 error: 9.33, 9.15
2012 -2014

Overfeat, Clarifi, Net-in-Net, etc.

Variants of AlexNet

NIPS 2012
AlexNet
A. Krizhevsky et al.

Milestone. First time to apply
CNN in large-scale dataset (top-5: 15.3).
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Inception-v4 model

@ A more uniform simplified architecture and more inception modules than
Inception-v3
Softmax Output: 1000

‘Dmpoul(keepo.&) Output: 1536

|

Avarage Pooling  ousat 153

Filter concat

‘ 3 x Inception-C Output: BxBx1536

3x1 Conv 1x3 Conv
(256) (256)

1x1 Conv

(256)

1x3Conv | 3x1 Conv
(256) (256)

3x1 Conv

1x1 Conv (i)
(256) f
1x3 Conv
1x1 Conv (448)
(384) t

1x1 Conv
(384)

‘ 7xInception-B  oupue 1xircioas

Avg Pooling

Reduction-A Ouput 17171024

e

Filter concat

‘ 4 X Inception-A Outpat: 3535384

Stem Zoom-in description of Inception-C block.
Ouiput 3535684

Compared with the original GoogleNet, it has more
convolution outputs with smaller filter size before feature

Input (299x299x3) 2090w !
concatenation.

Inception-v4 network
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Inception-ResNet-v2 model

@ A shortcut connection at the left of each module. Inception-ResNet-v2 was

training much faster and reached slightly better final accuracy than Inception-v4.

Output:8eax1702

Reduction-B

Relu activation

+
Activation scaling

3
T
10x Oulput 17173898
Inception-resnet-B

Reduction-A o nanane
5x Inception-resnet-A | O S

Ouput 356356256

2002993

Input (299x299x3)

Inception-Resnet v2
Xiaogang Wang (CUHK)

1x1 Conv
(1154 Linear)
7x1 Conv
(192)
f
1x1 Conv 1x7 Conv
(192) (160)
f
1x1 Conv
(128)

Relu activation

Zoom-in description of Inception-resnet-B block.

From empirical evidence:

1. Training with residual connections accelerates the
training of Inception networks significantly;

2. Scaling down residuals before adding them to the
subsequent layer’s activation stabilizes training.

Network Structures February 18, 2019
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Experiment results

Single model evaluated on ILSVRC CLS 2012 validation set.

Network Top-1 Error | Top-5 Error
BN-Inception [6] 25.2% 7.8%
Inception-v3 [15] 21.2% 5.6%
Inception-ResNet-v1 21.3% 5.5%
Inception-v4 20.0% 5.0%
Inception-ResNet-v2 19.9% 4.9%

Xiaogang Wang (CUHK)

Network Crops | Top-1Error | Top-5 Error
ResNet-151 [5] dense 19.4% 4.5%
Inception-v3 [15] 144 18.9% 4.3%
Inception-ResNet-v1 144 18.8% 4.3%
Inception-v4 144 17.7% 3.8%
Inception-ResNet-v2 144 17.8% 3.7%

Network Structures
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DenseNet

@ ResNet solve the gradient vanishing problem by converting the feature mapping
equation with identity addition

xi=H(x-1) —  x1=H(X-1)+ x-1

@ DenseNets do not sum the output feature maps of the layer with the incoming
feature maps but concatenate them

X = Hi([x0, x1,- -+, Xi—1])

@ Every layer has access to its preceding feature maps, and therefore, to the
collective knowledge
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DenseNet

@ DenseNets are divided into Dense Blocks, where the spatial dimensions of the
feature maps remains constant within a block, but the number of filters changes
between them.

@ The feature volume within a dense block remains constant

@ There is a transition block follows every dense block, which has 1 x 1
convolution that halves the number of feature maps followed by a 2 x 2 pooling
with a stride of 2

@ The volume and the feature maps are halved after every transition block

3 Dense
Avg Pooling Softmax

Dense-121. Dx: Dense Block x. Tx: Transition Block x.
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DenseNet

Layers Output Size DenseNet-12I [ DenseNet-169 | DenseNet-20l [ DenseNet-264
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 x 3 max pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
6 6 6 6 6
(1) 5636 |:3><3conv}x ‘[3)(3(:0an|>( ‘[3)(3(:0an|>( ‘[3)(3(:0an|>(
Transition Layer 56 x 56 1 > 1 conv
(1) 28 x 28 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
2 2 x28 |:3><3conv}>(12‘[3X3conv]X12 [3X3conv]X12‘[3X3c0nv]XI2
Transition Layer 28 x 28 1 x 1 conv
2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
14 x 14 24 2 4 64
3) * |:3><3conv}x ‘[3x3conv]>(3 [3x3c0nv]xsl[3x3conv]x
Transition Layer 14 x 14 1 > 1 conv
3) Tx7 2 x 2 average pool, stride 2
Dense Block 7x7 1 x 1 conv % 16 1 x 1 conv %3 1 x 1 conv 3 1x 1 conv % 48
“4) 3 x 3 conv 3 x 3 conv 3 x 3 conv 3 x 3 conv
Classification 1x1 7 x 7 global average pool

Layer

1000D fully-connected, softmax

Wang (CUHK)

Different DenseNet structures

u]
]
I
ul
it

Network Structures




Reading materials

@ A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Proc. NIPS, 2012.

@ M. Ranzato, “Neural Networks,” tutorial at CVPR 2013.

@ K. Chatffield, K. Simonyan, A. Vadaldi, and A. Zisserman, “Return of the Devil in
the Details: Delving Deep into Convolutional Networks,” BMVC 2014.

@ P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolutional
networks,” In Proc. Int'l Conf. Learning Representations, 2014.

@ K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

@ M. Lin, Q.. Chen, and S. Yan, “Network in network,” arXiv:1312.4400v3, 2013.

@ C. Szegedy, W. Liu, Y. Jia, P. Sermanet, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” arXiv:1409.4842, 2014.
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Reading materials

@ Deep Residual Learning for Image Recognition. K. He, et al. CVPR 2016. Best
paper.
» Highway and Residual Networks learn Unrolled lterative Estimation, ICLR
2017.
> Identity Mappings in Deep Residual Networks. K. He, et al. ECCV 2016.
Extension discussion of ResNet.
» Deep Networks with Stochastic Depth. G. Huang, et al. ECCV 2016
» Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS
2016.
» Wide Residual Networks. BMVC 2016.
» Residual LSTM: Design of a Deep Recurrent Architecture for Distant
Speech Recognition. https://arxiv.org/abs/1701.03360.
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Reading materials

@ Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. https://arxiv.org/abs/1602.07261v2.

» Rethinking the Inception Architecture for Computer Vision.
https://arxiv.org/abs/1512.00567v3.

» Wide-Residual-Inception Networks for Real-time Object Detection.

https://arxiv.org/pdf/1702.01243v1.pdf

>
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